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We study by numerical simulation a disordered Bose-Hubbard model in low-dimensional lattices. We show
that a proper characterization of the phase diagram on finite disordered clusters requires the knowledge of
probability distributions of physical quantities rather than their averages. This holds in particular for determin-
ing the stability region of the Bose-glass phase, the compressible but not superfluid phase that exists whenever
disorder is present. This result suggests that a similar statistical analysis should be performed also to interpret
experiments on cold gases trapped in disordered lattices, limited as they are to finite sizes.
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I. INTRODUCTION

The impressive progresses in experiments with ultracold
gases trapped in optical lattices have revived interest in old
yet fundamental issues of many-body physics.1 In fact, these
systems give the unique opportunity to experimentally real-
ize simple many-body models, such as the Bose or Fermi
Hubbard models, which are believed to capture the essential
physics underneath important phenomena, such as, for ex-
ample, superfluidity or the Mott metal-insulator transition.
Furthermore, most of the additional complications that arise
in realistic materials can be avoided and the Hamiltonian
parameters that identify these models are easily tunable in
these experiments, unlike in realistic materials.

One of the first successes of these experiments has been
the observation of a superfluid to Mott insulator transition in
bosonic atoms trapped in optical lattices upon varying the
relative strengths of interaction and interwell tunneling.2 The
possibility of introducing and tuning disorder, through speck-
les or additional incommensurate lattices, also led to the ob-
servation of Anderson localization for weakly interacting
Bose gases.3,4 These important achievements progressively
opened the way toward the challenging issue of realizing and
studying a Bose-Hubbard model in the presence of disorder.
Preliminary attempts to measure the excitation spectrum of
interacting bosons in a disordered lattice5 have been per-
formed by using Bragg spectroscopy.6

In spite of its simplicity, the disordered Bose-Hubbard
model should allow one to “simulate” experimentally several
interesting phenomena, such as, for example, the
superconductor-to-insulator transition in thin films of dirty
superconductors.7,8 We also mention that interacting bosonic
models on a lattice are also relevant to describe magnetic
systems in presence of a finite external magnetic field.9

The phase diagram of a disordered Bose-Hubbard model
is supposed to include three different phases.10,11 When the
interaction is strong and the number of bosons is a multiple
of the number of sites, the model should describe a Mott
insulator, with bosons localized in the potential wells of the
optical lattice. This phase is neither superfluid nor compress-
ible. When both interaction and disorder are weak, a super-

fluid and compressible phase must exist. These two phases
are also typical of clean systems. In the presence of disorder,
a third phase arises, the so-called Bose glass, which is com-
pressible but not superfluid.11 Indeed, when disorder is very
strong, bosons localize in the deepest potential wells, which
are randomly distributed. The coherent tunneling of a boson
between these wells is suppressed just as in the usual Ander-
son localization, hence the absence of superfluidity, in spite
of the fact that displacing a boson from one well to another
one may cost no energy, hence a finite compressibility. Based
on the same single-particle description used for explaining
Anderson localization, it was argued that disorder prevents a
direct superfluid-to-Mott insulator transition,11 a speculation
that has been subject to several theoretical studies.12–19

A simple way to justify the validity of the single-particle
arguments is to imagine that the few carriers, which are re-
leased upon doping a Mott insulator, effectively behave as
bosons at low density. In this case, the single-particle Ander-
son localization scenario is likely to be applicable since the
few interacting bosons occupy strongly localized states in the
Lifshitz tails. The implicit assumption is that the Mott-
Hubbard side bands survive in the presence of disorder and
develop Lifshitz’s tails that fill the Mott-Hubbard gap. This
scenario is quite appealing hence worth to be investigated
theoretically. However, a direct comparison of theory to ex-
periments has to face the problem that experiments on cold
gases are unavoidably limited to finite systems with hun-
dreds of sites and finite number of disorder realizations.
Therefore, objects such as Lifshitz’s tails, which arise from
rare disorder configurations, might not be easily accessible.
This fact demands an effort to identify salient features of the
Bose glass that may distinguish the latter from a superfluid
or a Mott insulator already on finite systems.

This is actually the scope of this work. Specifically, we
are going to show that the statistical distribution of the en-
ergy gaps extracted by a numerical simulation of finite-size
systems is a significant property that can discriminate among
different phases. The numerical simulations have been car-
ried out for a single chain, a two- and three-leg ladder sys-
tem, and finally for a genuine two-dimensional lattice. The
ladder systems are of interest because they can be experi-
mentally realized not only in optical lattices but also in mag-
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netic materials. Indeed, very recent neutron-scattering data
reported the evidence of the spin—analogous of a Bose—
glass phase in a spin-ladder compound in which disorder was
induced by random chemical substitution.20 Finally, we shall
also discuss how the probability distribution of the energy
gaps could be experimentally accessed.

The paper is organized as follows. In Sec. II, we present
the model and briefly discuss our numerical methods. In Sec.
III, we present and discuss our results. Finally, Sec. IV is
devoted to concluding remarks.

II. MODEL AND METHOD

The simplest Hamiltonian that contains the basic ingredi-
ents of strong correlations and disorder is the Bose-Hubbard
model

H = −
t

2 �
�i,j�

bi
†bj + H.c. + �

i
�U

2
ni�ni − 1� + �ini� , �1�

where �¯ � indicates nearest-neighbor sites, bi
† �bi� creates

�annihilates� a boson on site i, and ni=bi
†bi is the local-

density operator. The on-site interaction is parametrized by
U, whereas the local disordered potential is described by
random variables �i that are uniformly distributed in
�−� ,�	. Here, we consider bosons on a one-dimensional
�1D� chain, N-leg ladders, and a two-dimensional �2D�
square lattice.

We study model �1� by Green’s function Monte Carlo
with a fixed number M of bosons on L sites,21 n=M /L being
the average density. We recall that this is a zero-temperature
algorithm that provides numerically exact results because of
the absence of sign problem. One starts from a trial �e.g.,
variational� wave function and filters out high-energy com-
ponents by iterative applications of the imaginary-time evo-
lution operator. In order to improve the numerical efficiency,
it is important to consider an accurate starting wave function.
In the clean case, we have recently shown22 that good accu-
racy can be achieved by applying a density-density Jastrow
factor to a state where all bosons are condensed at q=0, i.e.,


�clean� = exp�−
1

2�
ij

vi,j�ni − n��nj − n��
�0� , �2�

where 
�0�= ��ibi
†�M
0� is the noninteracting Bose conden-

sate of M particles, �ni−n� is the variation of the on-site
density with respect to the average value n, and vi,j are trans-
lationally invariant parameters that are determined by mini-
mizing the variational energy.23

In the presence of disorder, we just add to Eq. �2� a site-
dependent one-body Jastrow factor


�� = exp��
i

gini�
�clean� , �3�

where gi’s are L additional variational parameters. This wave
function becomes the exact ground state for U=0 and finite
� if vi,j =0 and gi=ln �i, with �i being the amplitude at site
i of the lowest-energy single-particle eigenstate of the non-
interacting Hamiltonian. A similar wave function has been

recently used to describe the fermionic Hubbard model in the
presence of disorder.24 The flexibility of this variational state
makes it possible to describe equally well superfluid, Bose-
glass, and Mott insulating states.

We conclude this section by mentioning that, in a realistic
experimental setup, a two-leg ladder may be realized by
combining a double-well potential along a direction �say, x�
and two potentials along the z axis, one of them creating a
cigar geometry and the other one to create the periodic lat-
tice. By using a double-well potential such as in Ref. 25,
with a distance 
5 �m and a barrier 
h�500 Hz between
sites of different legs, one gets for a number of particles M

100 an interleg tunneling rate t�
h�5 Hz. Moreover,
with a distance 
0.5 �m and a barrier 
h�10 KHz be-
tween sites in the same leg, one gets an intraleg tunneling
rate t� 
 t�. Therefore, it is not unrealistic to consider a
space-isotropic hopping, equal along all bonds, which we
will assume hereafter.

III. RESULTS

In this section, we present our numerical results for the
Bose-Hubbard model �1�. First, we briefly discuss the case of
hard-core bosons �i.e., U=	� at low densities on a two-leg
ladder. Then we consider the case of soft-core bosons at
filling one, i.e., n=1, which represents the main subject of
this work.

A. Hard-core bosons at low densities

Figure 1 shows the low-density phase diagram of hard-
core bosons on a two-leg ladder. We find that for any finite
disorder �, the low-density phase is a Bose glass that turns
superfluid above a critical density. In other words, the trivial
Mott insulator with no bosons is indeed separated from the
superfluid phase by a Bose glass. We emphasize that the
existence of a superfluid phase for hard-core bosons in a
two-leg ladder is per se remarkable. Indeed, in a single chain
with nearest-neighbor hopping, hard-core bosons are equiva-
lent to spinless fermions, which Anderson localized for any
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FIG. 1. �Color online� Upper panel: superfluid stiffness 
s as a
function of the disorder strength � / t for different densities of hard-
core bosons. Lower panel: low-density phase diagram of the hard-
core bosonic model. Calculations have been done on a 2�50 ladder
system.
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density and in any dimension D�2. Consequently, hard-core
bosons on a single chain are never superfluid. Already in a
two-leg ladder, hard-core bosons start to behave differently
from spinless fermions. Indeed, while the latter ones remain
always localized, the former ones show a superfluid phase.
We just mention that the same occurs also on a single chain
with longer-range hopping.

B. Soft-core bosons at n=1

We now turn to finite on-site interactions and consider the
case with n=1. The Bose-Hubbard model has been exten-
sively studied in recent years,12–19 with special focus on the
question whether a direct superfluid to Mott insulator transi-
tion does exist or not. This issue has been finally solved only
recently. The solution is based on the observation that, if the
disorder strength � is larger than half of the energy gap of
the clean Mott insulator Eg

clean, then the ground state must be
compressible, otherwise is incompressible.18,26 Therefore,
the independent measurements of the superfluid stiffness 
s
at finite � and of the clean Mott gap Eg

clean allow a precise
determination of the phase boundaries between different
phases and demonstrate unambiguously the existence of a
Bose glass in between the superfluid and Mott phases.18,19

The above prescription is very effective in a numerical simu-
lation since both 
s with disorder and Eg

clean without disorder
can be determined quite accurately. In a real experiment,
such a prescription is difficult to put in practice as it requires
the knowledge of Eg

clean and an estimate of the disorder
strength. Instead, it would be more desirable to have a simple
criterion to establish directly the nature of the phase of a
given system in a realistic finite-size experimental setup. In a
clean system, this program can be accomplished by measur-
ing the gap, conventionally defined by Eg=�+−�−, where
�+=EM+1−EM and �−=EM −EM−1 �EM being the ground-
state energy with M particles�. Experimental estimates for
the gap have been so far obtained in ultracold atomic sys-
tems mainly in two ways: one consists in applying a gradient
potential that compensates the Mott energy gap and allows
tunneling between neighboring sites;2 the other method ex-
ploits a sinusoidal modulation of the main lattice height for
stimulating resonant production of excitations.5,6

In disordered systems, the Mott gap can be overcome by
transferring particles between two regions with almost flat
disorder shifting the local chemical potential upward and
downward, respectively. These regions may be far apart in
space and represent rare fluctuations �Lifshitz’s tail regions�.
Therefore, it is quite likely that the conventional definition of
the gap

Ēg =
1

N �
�=1,. . .,N

���
+ − ��

−� , �4�

where � denote the disorder realizations, will miss the Lif-
shitz’s tails for any accessible number of disorder realiza-
tions N. This fact could give a finite gap even when the
actual infinite system would be compressible. To circumvent
such a difficulty, it is useful to imagine that a large systems is
made by several subsystems, each represented by the L-site
cluster under investigation, and construct the gap by using

�+ and �− from different disorder realizations. In other
words, one could define an alternative estimate of the gap as

Eg
min = min�,�
��

+ − ��
−
 , �5�

with all the disorder realizations � and �. In the limit of very
large systems where boundary effects become negligible,

Eg
min must eventually coincide with Ēg. In finite systems, the

two estimates differ, nevertheless we believe that Eg
min is

more representative than the average value. Besides Eg
min,

one can define the full gap distribution

P�Eg� = �
��


�Eg − ��
+ + ��

−� , �6�

which we will show has remarkable properties. We mention
that, by our definition, P�Eg�0� could well be finite on finite
systems, although it must vanish in the thermodynamic limit
where P�Eg� becomes peaked at a single positive �or vanish-
ing� value, i.e., the actual gap. In experiments with ultracold
atoms, both Eg

min and P�Eg� could be accessed by measuring
separately �+ and �− for different disorder realizations. For
instance, one could measure the energy releases EM

rel of fall-
ing atoms when the trap is turned off with the reference
number of particles M and with numbers M �M�. For M�
�M, indeed EM+M�

rel −EM
rel�M��+ and EM

rel−EM−M�
rel �M��−.

Let us start from the 1D case, whose zero-temperature
phase diagram has been worked out by density-matrix renor-
malization group �DMRG�.27 At finite values of �, the on-
site interaction U turns the Bose glass into a superfluid,
which remains stable up to U=Uc1, where 
s vanishes. How-
ever, the system remains gapless for Uc1�U�Uc2, indicat-
ing the presence of a Bose-glass phase. At U=Uc2, the sys-
tem turns into an incompressible Mott insulator. For � / t=2,

we have that Uc1 / t�3.7. If we use Ēg as estimator of the
actual gap, we find that the Bose glass survives up to Uc2 / t
�5, not far from the DMRG estimate,27 but smaller than the
value predicted by the condition �=Eg

clean /2, which would
lead to Uc2 / t�6.9. As discussed before, this discrepancy
arises by the inability to catch rare disorder configurations,
which could be overcome by analyzing the minimum gap
Eg

min and the full distribution probability P�Eg�. Indeed, when
using Eg

min as a detector of gapless excitations, we obtain an
estimate of Uc2 / t�6.2, much closer to the expected value
Uc2 / t�6.9. As far as P�Eg� is concerned, we note that it
behaves quite differently in the three different phases �see
Fig. 2�. As long as the phase is superfluid, P�Eg� is peaked at
Eg=0. In the Bose glass, P�Eg� is instead peaked at a finite
Eg�0, yet P�0� stays finite. In the Mott insulator, P�Eg�
remains peaked at a positive Eg but P�0�=0. This suggests
that P�Eg� could also be an efficient tool for discriminating
between different phases.

Let us now analyze the evolution of the phase diagram
when the 2D limit is approached by increasing the number of
legs. Moving from D=1 to D=2, the stability region of the
Bose glass is expected to shrink,11 making its observation in
experiments more and more difficult. In Fig. 3, we show our
results for two- and three-leg ladders and, for comparison,
also the 2D limit �evaluated for a rather small 12�12 clus-
ter�. In this case, we take � / t=5, in order to have a larger
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Bose-glass region in between the superfluid and the Mott
phases. In 1D, for such large disorder strength, no superflu-
idity is found at all. By increasing the number of legs, we
rapidly converge to the 2D results: this fact is particularly
clear from the data on the gap. Both the results on the mini-
mum gap and the ones that come from �=Eg

clean /2 show that
the critical U for the Mott transition is almost the same for
three legs and 2D. Also, the superfluid stiffness 
s seems to
rapidly converge from below to the 2D limit. We also find
that the behavior of P�Eg� is qualitatively similar to what
found in 1D, confirming that it can actually discriminate
among the different phases �see Fig. 4�. We mention that,

should we use as estimator of the gap Ēg, we would have
concluded that the Bose glass never exists in 2D and that a
direct superfluid to Mott insulator transition occurs. The use
of Eg

min instead demonstrates that the Bose glass does exist
also in 2D and always intrudes between the superfluid and
the Mott insulator.

In Fig. 5, we plot the density profile for a given disorder
configuration on the 2�40 ladder. As soon as the on-site
interaction is finite, particles become rather delocalized and

many sites of the lattice acquire a finite-boson density. There
are large fluctuations in the local density with ni ranging
from �0 to ni

max�4. Although there is a number of sites
with very small density, the superfluid stiffness is finite �e.g.,

s=0.015�2� for U / t=1	. We notice that, in spite of the dis-
order being uncorrelated from site to site, there is a strong
density correlation between the two legs. By increasing fur-
ther U / t, the density becomes more and more homogeneous
�for U / t=5, ni

max�2, still with rather large fluctuations�. 
s
has a maximum U / t�5 and then is suppressed �e.g., 
s
=0.0015�5� at U / t=11	. However, as far as the local density
is concerned, we do not observe a drastic modification be-
tween the superfluid �e.g., U / t�9� and the Bose glass �e.g.,
U / t�9�, even though fluctuations look considerably sup-
pressed for U / t=11 �see Fig. 5�. Eventually, for U / t�12,
the incompressible Mott phase is reached, with very small
density fluctuations �ni�1�, which are not very different
from the ones observed in the Bose glass close to the transi-
tion.

We finish by showing variational results for the momen-
tum distribution nk= �bk

†bk� for the same ladder system. In
Fig. 6, we show the results for different values of U / t �we
also report the results for the variational gap�. Since, this is
an almost 1D system, no condensation fraction is found �i.e.,
n0 /L→0 in the thermodynamic limit�. However, the super-
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FIG. 2. �Color online� Distribution P�Eg� of the gap in the 1D
Bose-Hubbard model for different values of U / t and L=60 sites.
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fluid phase is characterized by quasi-long-range order with a
cusp in nk and a logarithmic divergent n0. On the other hand,
both the Bose-glass and the Mott phases have a smooth mo-
mentum distribution, with n0→const in the thermodynamic
limit.

IV. CONCLUSIONS

We have presented a detailed study of the ground-state
properties of the disordered Bose-Hubbard model in low-

dimensional lattices, relevant for on-going experiments with
cold atomic gases trapped in optical lattices. We have deter-
mined the distribution probability of the gap on finite sizes
and shown that it contains useful information. In particular,
we have found that the Bose glass is characterized by a broad
distribution of the gap that is peaked at finite energy but
extends down to zero, a shape remarkably reminiscent of
preformed Hubbard sidebands with the Mott gap completely
filled by Lifshitz’s tails. The Mott transition occurs when
these tails terminate at finite energy. On the contrary, the gap
distribution in the superfluid phase turns out to be strongly
peaked at zero energy. These results suggest a simple and
efficient way to discriminate between different phases in ex-
periments, which, being performed on finite systems, suffer
from the same size limitations as our simulations.

We have also investigated the disordered Bose-Hubbard
model on N-leg ladder systems, emphasizing that these ge-
ometries could be quite useful to study the evolution from
one to two spatial dimensions. Experiments with both cold
atomic gases and magnetic systems are becoming now pos-
sible on ladders, hence we believe that our calculations may
represent an important benchmark in this direction.
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